Acta Cryst. (1996). C52, 1713-1716

Morusin and Morusin Dimethyl Ether

Akira Uchida," Hiromi Mizutani," Shigeru Ohshima," Isao Oonishi," Yoshio Hano,^b Toshio Fukai^b and Taro Nomura^b

"Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi-shi, Chiba 274, Japan, and ^bDepartment of Physical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi-shi, Chiba 274, Japan. E-mail: auchida@toho-u. ac.jp

(Received 8 November 1995; accepted 8 March 1996)

Abstract

The structures of morusin, 2-(2,4-dihydroxyphenyl)-5-hydroxy-8,8-dimethyl-3-(3-methyl-2-butenyl)-4H,8Hbenzo[1,2-*b*;3,4-*b'*]dipyran-4-one, $C_{25}H_{24}O_6$ (I), and morusin dimethyl ether, 2-(2,4-dimethoxyphenyl)-5-hydroxy-8,8-dimethyl-3-(3-methyl-2-butenyl)-4H,8Hbenzo[1,2-*b*;3,4-*b'*]dipyran-4-one, $C_{27}H_{28}O_6$ (II), are reported. In compounds (I) and (II), the benzopyranone moiety is planar. The dihedral angles between the benzopyranone moiety and the phenyl ring are 66.25 (10) and 85.32 (5)°, respectively. When the dihydroxyphenyl [dimethoxyphenyl for (II)] and 3-methyl-2-butenyl groups are fixed in the same positions to the benzopyranone plane, the pyrano rings of (I) and (II) are enantiomeric.

Comment

The photoreaction of the title compound [morusin: (I)] with a high-pressure mercury lamp gives the hydroperoxide with an ether linkage between an alkenyl group

at C3 and an hydroxyl group at C2' (Nomura, Fukai, Yamada & Katayanagi, 1977). Crystals of morusin (I) and its dimethyl ether (II) have been prepared so that the interaction between the above two functional groups participating in the formation of the ether linkage can be examined by X-ray diffraction.

The molecular structures of (I) and (II) are shown in Figs. 1 and 2, respectively. In both (I) and (II), the benzopyranone moleties are planar. The dihedral angles between the planes O1,C2,C3,C4,C10,C9 and C5,C6,C7,C8,C9,C10 are 1.7(1) and $1.7(2)^{\circ}$ for (I)

and (II), respectively. The dihydroxyphenyl [dimethoxyphenyl for (II)] and 3-methyl-2-butenyl groups are not coplanar with the benzopyranone in either molecule; the torsion angles C3-C2-C1'-C2' and C4-C3-C11-C12 are 67.9(4) and 74.3(4), and 85.5(2) and $96.4(2)^{\circ}$ in (I) and (II), respectively. The former values are comparable to those of $62.2(1)^{\circ}$ in 6-hydroxy-2',3'-dimethoxyflavone (Wallet, Gaydou, Mas, Molins & Miravitlles, 1993) and 68.2° in 7-hydroxy-2',6'dimethoxyflavone (Wallet, Gaydou, Espinosa, Osorno, Molins & Miravitlles, 1992). One of the two methoxy groups in (II) is coplanar with the phenyl ring, as shown by the C5'-C4'-O4'-C8' torsion angle of $-1.3(3)^{\circ}$. The other is twisted slightly out of the plane $[C3'-C2'-O2'-C7' = 10.9(3)^{\circ}]$; this can be attributed to the steric hindrance between the methoxy and 3-methyl-2-butenyl groups. The puckering of the 1,3-diplanar pyrano rings of (I) and (II) is mirror related. This can be seen if the relative positions of the dihydroxyphenyl [dimethoxyphenyl for (II)] and 3methyl-2-butenyl groups to the benzopyranone group are defined by torsion angles, e.g. O1-C2-C1'-C2' and C4-C3-C11-C12, with the same signs (-and ++). Then the deviations of O7 and C16 from the C7, C8, C18, C17 plane are -0.164(3) and 0.346(7) Å in (I); the corresponding values for (II) are 0.163(3) and -0.291 (4) Å, respectively.

In both molecules, intramolecular hydrogen bonding occurs between the hydroxyl- and ketonic-O atoms of the benzopyranone group. In the Figs. 1 and 2, the H

Fig. 1. The perspective drawing of morusin. Displacement ellipsoids are drawn at the 50% probability level.

Refinement

C4′ 04' C5'

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0605$ wR(F²) = 0.1848 S = 0.7783463 reflections 287 parameters H-atom parameters not refined $w = 1/[\sigma^2(F_v^2) + (0.1678P)^2]$ + 2.4812P] where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = -0.022$ $\Delta \rho_{\rm max} = 0.601 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.274 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (1)

Fig. 2. The perspective drawing of morusin dimethyl ether. Displacement ellipsoids are drawn at the 50% probability level.

C2 C3 atom bonded to O5 has been included. The O4...O5 C4 distances of 2.601 (3) and 2.581 (2) Å for (I) and (II), 04 respectively, compare with the values of 2.612(5)Å C5 05 reported for hymanoxin (Watson, Kashyap, Gao & C6 Mabry, 1991) and 2.580(2) Å reported for centaureidin Č7 (Fronczek, Parodi & Fischer, 1989). C8 C9

Experimental

Compound (I) was isolated from Morus alba Linne and (II) was synthesized by the etherification of morusin

Compound (I)

none

3463 measured reflections

2639 observed reflections

 $[I > 2\sigma(I)]$

3463 independent reflections

Crystal data	
$C_{25}H_{24}O_6$ $M_r = 420.44$ Monoclinic $P2_1/c$ a = 11.0672 (8) Å b = 17.6850 (12) Å c = 12.0475 (8) Å $\beta = 111.945$ (5)° V = 2187.1 (3) Å ³ Z = 4 $D_x = 1.277$ Mg m ⁻³	Cu $K\alpha$ radiation $\lambda = 1.54180$ Å Cell parameters from 25 reflections $\theta = 57-60^{\circ}$ $\mu = 0.748 \text{ mm}^{-1}$ T = 293 (2) K Prism $0.4 \times 0.4 \times 0.2 \text{ mm}$ Colourless
Data collection	
Rigaku AFC-6 four-circle diffractometer	$\theta_{\max} = 62.49^{\circ}$ $h = 0 \rightarrow 12$
Profile data from $\omega - 2\theta$ scans Absorption correction:	$k = 0 \longrightarrow 20$ $l = -13 \longrightarrow 12$

$h = 0 \rightarrow 12$
$k = 0 \rightarrow 20$
$l = -13 \rightarrow 12$
3 standard reflections
monitored every 100
reflections
intensity decay: none

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	х	v	5	U_{eq}
01	0.3324(2)	0.13461 (10)	-0.0365(2)	0.0452 (5)
C2	0.2230(3)	0.1162(2)	-0.1318(2)	().()449 (7)
C3	0.1721 (3)	0.0462(2)	-0.1496 (3)	0.0518 (8)
C4	0.2310(3)	-0.0118(2)	-0.0608(3)	0.0502 (7)
04	0.1835(2)	-0.07745(12)	-0.0695(2)	0.0690(7)
C5	0.4215 (3)	-0.0448(2)	0.1248 (3)	0.0516 (8)
05	0.3826(3)	-0.11763 (12)	0.1187(2)	0.0754 (8)
C6	0.5313(3)	-0.0221(2)	0.2198 (3)	0.0547 (8)
C7	0.5693 (3)	0.0531(2)	0.2279(3)	0.0487 (7)
C8	0.5060 (3)	0.1064(2)	0.1415(3)	0.0462 (7)
C9	0.3960(3)	0.08153 (15)	0.0469(2)	0.0416 (6)
C10	0.3493 (3)	0.0075(2)	0.0364 (2)	().0437 (7)
C1′	0.1750 (3)	0.1828(2)	-0.2104(3)	().047() (7)
C2'	0.0565 (3)	0.2177(2)	-0.2267(3)	0.0499(7)
02'	-0.0244(3)	0.1940(2)	-0.1727 (3)	0.0844 (9)
C3′	0.0143 (3)	0.2795(2)	-0.3020(3)	0.0513 (7)
C4′	0.0890(3)	0.3066(2)	-0.3609(3)	0.0515 (8)
04'	0.0507(3)	0.36732 (12)	-0.4381(2)	0.0647 (7)
C5'	0.2078 (4)	0.2736(2)	-0.3455(4)	0.0721 (10
C6'	0.2503 (4)	0.2132(2)	-0.2690(3)	0.0671 (10
C11	0.0657 (3)	0.0245(2)	-0.2659(3)	0.0615 (9)
C12	-0.0619(4)	0.0082(2)	-0.2591 (4)	0.0739 (10)
C13	-0.1596 (3)	-0.0314(2)	-0.3411 (3)	0.0688 (10
C14	-0.2853(5)	-0.0400 (4)	-0.3265 (5)	0.121(2)
C15	-0.1539 (4)	-0.0658 (3)	-0.4485 (4)	0.101(2)
07	0.6775 (2)	0.07265 (13)	0.3238(2)	0.0633 (6)
C16	0.6929 (3)	0.1526(2)	0.3620(3)	0.0652 (9)
C17	0.6512(3)	0.2030(2)	0.2552 (3)	0.0675 (10)
C18	0.5600(3)	0.1823(2)	0.1533 (3)	0.0594 (8)
C19	0.8365 (4)	0.1595 (3)	0.4358 (5)	0.100(2)
C20	0.6091(5)	0.1653(3)	0.4342 (5)	0.102 (2)

Table 2 Selected geometric parameters (Å, °) for (I)

ruore	2. 5000000 8	comente	paramerers (m,	/) (1)
01	1.3	63 (3)	C1'-C6'	1.386 (4)
01C2	1.3	60(3)	C1'C2'	1.395 (4)
C2C3	1.3	44 (4)	C2'—O2'	1.355 (4)
C2C1'	1.4	80(4)	C2'-C3'	1.385 (4)
C3C4	1.4	48 (4)	C3'—C4'	1.363 (4)
C3C11	1.5	05 (4)	C4'—O4'	1.379 (4)
C404	1.2	(4)	C4'—C5'	1.386 (5)
C4—C10	1.4	34 (4)	C5'C6'	1.374 (5)
C5-05	1.3	52 (4)	C11—C12	1.474 (5)
C5C6	1.3	81 (4)	C12—C13	1.355 (5)
C5-C10	1.4	12 (4)	C13-C15	1.451 (6)
C6—C7	1.3	88 (4)	C13—C14	1.475 (6)
C7—O7	1.3	62 (4)	O7—C16	1.476 (4)
С7—С8	1.3	84 (4)	C16—C17	1.490 (5)
С8—С9	1.3	91 (4)	C16—C20	1.508 (6)
C8C18	1.4	55 (4)	C16-C19	1.508 (5)
C9—C10	1.3	95 (4)	C17—C18	1.316 (5)

AKIRA UCHIDA et al.

C9O1C2 C3C2O1 C3C2C1' O1C2C1'	120.6 (2) 122.9 (3) 127.0 (3) 110.1 (2)	C6'C1'C2' C6'C1'C2 C2'C1'C2 O2'C2'C3'	118.0 (3) 119.6 (3) 122.4 (3) 115.9 (3)	Table 3. Fractional atomic coordinates and equivalentisotropic displacement parameters $(Å^2)$ for (11)					
C2C3C4	119.3 (3)	02' - C2' - C1'	123.5(3)		U_{eq}	$= (1/3)\Sigma_{i}$	$\sum_{j} U_{ij} a$	$a_j^*a_j$.	
C4C3C11	119.1 (3)	$C_{2}^{2} - C_{3}^{2} - C_{4}^{2}$	120.6 (3)		x	y		3	U_{eq}
O4C4C10	120.8 (3)	O4'-C4'-C3'	122.1 (3)	01	0.86515 (10)	0.73563	8(10)	0.60875 (12)	0.0454 (3)
O4-C4-C3	122.1 (3)	04'C4'C5'	117.1 (3)	C2	0.9886 (2)	0.74042	(14)	0.6719(2)	0.0448 (4)
$C_{11} = C_4 = C_3$	117.1(3)	C3' - C4' - C5'	120.8 (3)	C4	1.0044 (2)	0.63754	(15)	().3988(2) ().4426(2)	()()479(4)
05	119.0(3) 120.3(3)	(4 - (5 - (1)))	119.2(3) 1215(3)	04	1.06682 (13)	0.59520	(13)	0.3679 (2)	(0.0649(4))
C6-C5-C10	120.7(3)	$C_{12} = C_{11} = C_{12}$	121.5(3) 1155(3)	C5	0.8107 (2)	0.58130	(15)	().2257 (2)	0.0466 (4)
C7C6C5	119.0 (3)	C13-C12-C11	125.5 (4)	O5	0.87243 (13)	0.53502	(13)	0.13813(14)	0.0600 (4)
07	120.2 (3)	C12—C13—C15	125.3 (4)	C6	0.6862 (2)	0.5762	2)	0.1679 (2)	0.0480 (4)
07	116.7 (3)	C12-C13-C14	119.8 (4)	C7	0.6230(2)	0.62290	(15)	0.2584 (2)	0.0441 (4)
C8C7C6	123.0 (3)	C15—C13—C14	114.9 (4)		0.0818(2) 0.8077(2)	0.67/90	(14)	0.4079(2)	(1.0429(4))
C7 - C8 - C18	110.3 (3)	$C_{1} = 0_{1} = C_{16}$	118.0 (2)	CIÐ	0.8750(2)	0.63400	(14)	0.4020(2) 0.3770(2)	().()472(4)
C9-C8-C18	118.7(3) 125.0(3)	07 - 016 - 017	110.0(3)	CI'	1.0336 (2)	0.80509	(15)	0.8292 (2)	0.0451(4)
01 - C9 - C10	120.0(3) 120.5(2)	$C_{17} - C_{16} - C_{20}$	107.5(3) 110.5(3)	C2′	1.10261 (15)	0.92985	(15)	0.8725 (2)	0.0445 (4)
01	116.1(2)	07 - C16 - C19	10.5(3)	02'	1.11674 (13)	0.98447	(11)	0.76139(13)	0.0567 (4)
C10-C9-C8	123.5 (3)	C17-C16-C19	112.2 (3)	C3′	1.1500(2)	().9898 (2)	1.0187(2)	().()479 (4)
C9-C10-C5	117.4 (3)	C20-C16-C19	112.8 (4)	C4′	1.1282(2)	0.9268 (2)	1.1239(2)	().()491 (4)
C9-C10-C4	119.5 (3)	C18—C17—C16	121.4 (3)	04′	1.17954 (14)	0.99620	(13)	1.26450(14)	0.0647 (4)
C5C10C4	123.1 (3)	C17-C18-C8	119.4 (3)	C5'	1.0596 (2)	0.8044 (2)	1.0839 (2)	0.0552 (5)
				C6'	1.0125 (2)	0.7451 (2)	0.9360(2)	0.0535 (5)
_				C/	1.2027(2)	1,1046 (2) 7)	0.7989(3)	(1.0/3/(6))
Compound (II)				07	0.50207(11)	0.9401 (3) (13)	1.3790(2)	0.08/3(8)
Crystal data				CII	1.1924(2)	0.02008	(12) 2)	(1,1,9,5,7,6,(1,2))	0.0545 (5)
				C12	1.2939 (2)	0.8154 (2)	0.6742(2) 0.6916(2)	0.0500 (5)
$C_{27}H_{28}O_6$		Cu $K\alpha$ radiation		C13	1.4149(2)	().8469 (2)	0.7652 (2)	0.0604(5)
$M_r = 448.49$		$\lambda = 1.54180 \text{ Å}$		C14	1.5087 (2)	().967() (2)	().7747 (4)	0.0938 (9)
Triclinic		Cell parameters fr	om 25	C15	1.4704 (2)	0.7647 (3)	0.8408 (4)	0.1028 (10)
PĪ		reflections	om 25	C16	0.4149 (2)	0.6295 (2)	0.2837 (2)	0.0511 (4)
a = 11326(2) Å		$A = 50 \pm 60^{\circ}$		C17	0.4882 (2)	().7143 (2)	0.4319(2)	0.0592 (5)
u = 11.520(2) A		0 = 39 - 60		C18	0.6120(2)	0.7340 (2)	0.4911 (2)	0.0528 (5)
b = 11.800 (2) A		$\mu = 0.727 \text{ mm}^{-1}$		C19	0.3520(2)	0.5038 (2)	0.2980 (3)	0.0753 (6)
c = 9.688 (2) A		T = 293 (2) K		C20	0.3187 (2)	0.6779(2)	0.1986 (2)	0.0676(6)
$\alpha = 99.87 (2)^{\circ}$		Plate							
$\beta = 103.31 (2)^{\circ}$		$0.4 \times 0.4 \times 0.3$ r	nm					0	
$\gamma = 105.73 (1)^{\circ}$		Orange		Table 4	. Selected	geometric	c para	ameters (Å, °) for (11)
$\dot{V} = 11750 (4) Å^3$				$01-C^{2}$	1	272 (2)	C1'	c''	1 402 (2)
7 - 2				01	1	370(2)	C'_{-}	C2 02'	1.405(2)
$D = 1.269 \text{ M}_{\odot} \text{ m}^{-3}$	1			C2-C3	i	.345 (3)	$C_{2}^{2} =$	C3'	1.304(2) 1.377(2)
$D_{3} = 1.208$ Mg m				C2-C1'	Î	.482 (2)	02'-	C7′	1.415 (2)
				C3—C4	1	.452 (3)	C3'-	C4'	1.388 (3)
Data collection				C3—C11	1	506 (2)	C4'—	O4′	1.364 (2)
Rigaku AFC-6 four-	circle	$A = 62.49^{\circ}$		C404	1.	.256 (2)	C4'—	C5′	1.379 (3)
diffractometer	enele	$b_{max} = 02.47$		C4—C10	1.	.444 (2)	04'—	C8′	1.416 (3)
Drofilo doto from	20	$n = -12 \rightarrow 13$		05-05	1.	.353 (2)	C5'-	C6'	1.389 (3)
Frome data from ω -	-20 scans	$K = -13 \rightarrow 13$		$C_{5} = C_{6}$	1.	.372 (.3)	0/(.16 Ch2	1.471 (2)
Absorption correctio	n:	$l = -11 \rightarrow 10$		$C_{0} = C_{10}$	1.	386 (2)	C_{12}	C12	1.502 (.3)
none		3 standard reflection	ons	C7-07	1.	359(2)	C12-	C13	1.307 (3)
3712 measured refle	ctions	monitored every	/ 100	C7—C8	1.	401 (2)	C13-	C15	1.496 (3)
3712 independent re	flections	reflections		C8—C9	1.	390 (2)	C16—	C17	1.503 (2)
3265 observed reflect	tions	intensity decay:	none	C8—C18	1.	451 (3)	C16-	C19	1.507 (3)
$[I > 2\sigma(D)]$		intensity decay.	none	C9C10	1.	393 (2)	C16—	C20	1.510(3)
[1 > 20(1)]				C1'—C6'	1.	379 (3)	C17—	C18	1.325 (3)
Rafinamont				C2-01C9) 11	9.6 (1)	C6'(CI'C2	121.7 (2)
Kejinemeni				C3-C2-O1	12	23.7 (2)	C2'-0	C1'—C2	119.8 (2)
Refinement on F^2		$(\Delta/\sigma)_{\rm max} = -0.03$	2	C3C2C1	12	25.1 (2)	02'-0	C2'—C3'	124.1 (2)
$R[F^2 > 2\sigma(F^2)] = 0$	0495	$\Lambda_{0} = 0.242 \text{ e}^{3}$	<u> </u>	01—C2—C1	' 11	1.1(1)	02'-0	C2'—C1'	115.6 (2)
$wR(F^2) = 0.1422$	0.75	$\Delta \rho_{\rm max} = 0.212.01$	Å – 3	C2-C3-C4	11	9.1 (2)	C3'-(C2' - C1'	120.3 (2)
S = 0.603		$= -\rho_{min} = -0.360 \text{ e}$	л 	$-C_2 = C_3 - C_1$	1 12	(1.7(2)	C2'($J_2' = C7'$	117.7 (2)
2712 rofloctions		Extinction correcti	оп: попе	04 - 03 - 01	י 11 () רי	7.2 (2)	$C_{2} = 0$	-4	119.8 (2)
2012 reliections		Atomic scattering	Tactors	04-04-03	12	19(2)	04' = 0		124.9(2)
321 parameters		from Internation	al Tables	C10C4C	3 11	6.6 (2)	C5'-	"4'("3'	1208(2)
H-atom parameters n	ot	for Crystallogra	phy (1992,	05-05-06	11	9.8 (2)	C4'~	04'—C8'	118.2 (2)
refined		Vol. C. Tables 4	.2.6.8 and	05C5C1	0 11	9.7 (2)	C4'-C	C5'—C6'	118.7 (2)
$w = 1/[\sigma^2(F_a^2) + (0.1)]$	$(507P)^2$	6.1.1.4)		C6C5C1	0 12	().6 (2)	C5'-C	C6'-C1'	121.8 (2)
+ 0.5679 <i>P</i> 1	- /	·····/		C5-C6-C7	11	9.5 (2)	C7—0	7C16	119.4 (1)
	25212			07	11	6.9 (2)	C12(СП—С3	114.1 (2)
where $P = (F - \pm$	78-174					-			

С6С7С8	122.6 (2)	C12-C13-C14	121.9 (2)
C9—C8—C7	116.2 (2)	C12-C13-C15	122.7 (2)
C9-C8-C18	125.0 (2)	C14—C13—C15	115.4 (2)
C7-C8-C18	118.7 (2)	07—C16—C17	110.2(1)
01-C9-C8	116.0(2)	O7-C16-C19	108.0(2)
O1C9C10	120.5 (2)	C17-C16-C19	110.7 (2)
C8-C9-C10	123.5 (2)	O7-C16-C20	104.7 (2)
C9-C10-C5	117.6(2)	C17—C16—C20	111.5 (2)
C9-C10-C4	120.3 (2)	C19-C16-C20	111.5 (2)
C5C10C4	122.1 (2)	C18-C17-C16	122.1 (2)
C6'-C1'-C2'	118.5 (2)	C17—C18—C8	119.5 (2)

For both compounds, data collection: *MSC/AFC* (Molecular Structure Corporation, 1988); cell refinement: *MSC/AFC*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1985); program(s) used to solve structures: *SHELXL*86 (Sheldrick, 1990); program(s) used to refine structures: *SHELXL*93 (Sheldrick, 1993); molecular graphics: *ORTEPII* (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1170). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Square, Chester CH1 2HU, England.

References

- Fronczek, F. R., Parodi, F. J. & Fischer, N. H. (1989). Acta Cryst. C45, 1827-1829.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Nomura, T., Fukai, T., Yamada, S. & Katayanagi, M. (1977). Chem. Pharm. Bull. 25, 1155-1156.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Wallet, J. C., Gaydou, E. M., Espinosa, E., Osorno, O., Molins, E. & Miravitles, C. (1992). Acta Cryst. C48, 86–88.
- Wallet, J. C., Gaydou, E. M., Mas, M., Molins, E. & Miravitlles, C. (1993). Acta Cryst. C49, 2030–2032.
- Watson, W. H., Kashyap, R., Gao, F. & Mabry, T. J. (1991). Acta Cryst. C47, 459-461.

Acta Cryst. (1996). C52, 1716-1718

1-Benzoyl-3-(4-nitrophenyl)thiourea

DE-Chun Zhang,* Yan-Qiu Zhang, Yang Cao and Bo Zhao

Department of Chemistry, Suzhou University, Suzhou 215006, People's Republic of China

(Received 19 October 1995; accepted 22 January 1996)

Abstract

In the molecules of the title compound, $C_{14}H_{11}N_3O_3S$, there is an intramolecular N—H···O hydrogen bond [2.635 (3) Å] between the amide N and benzoyl O atoms which completes a nearly planar six-membered ring in the central part of the molecule. The benzene rings of the benzoyl and nitrophenyl moieties form angles of 30.5 (4) and 35.7 (4)°, respectively, with the plane of this hydrogen-bonded ring. In the crystal, molecules are connected into infinite zigzag chains by N—H···O bonds and these chains are linked across centres of symmetry by weak N—H···S interactions, thus forming a two-dimensional network. Van der Waals interactions between layers lead to a crystal structure with one very short axis (4 Å).

Comment

During our systematic search for non-linear optical organic crystals having a short cut-off wavelength, we isolated the title compound, (I).

Since we do not have access to the Cambridge Structural Database (Allen et al., 1979), a literature search was carried out on compounds of the type $R^1C_6H_4$ -CO-NH-CS-NH-C₆H₄ R^2 . The structure determination of one similar compound was found with $R^1 = Cl$ and $R^2 = H$ (Dago, Simonov, Pobedimskaya, Martin & Masias, 1988), which has bond lengths and angles in close agreement with those of the present determination. An N(2)— $H \cdot \cdot \cdot O(1)$ intramolecular hydrogen bond [2.635 (3) Å] completes an almost planar six-membered ring with atoms C(1), N(1) and C(8); the maximum deviation from the best plane of the five non-H atoms is 0.014 (2) Å and the S atom is 0.104 (2) Å out of the plane (Fig. 1). The NO₂ group is twisted by $10.0 (4)^{\circ}$ from the plane of the benzene ring to which it is attached.